inorganic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

AgNa₂Mo₃O₉AsO₄

Hamadi Hamza, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences, Université de Tunis–ElManar, 2092 El-Manar, Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 26 September 2011; accepted 11 October 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Mo–O) = 0.004 Å; disorder in main residue; R factor = 0.024; wR factor = 0.063; data-to-parameter ratio = 12.5.

The title compound, silver disodium trimolybdenum(VI) nonaoxide arsenate, $AgNa_2Mo_3O_9AsO_4$, was prepared by a solid-state reaction at 808 K. The structure consists of an infinite $(Mo_3AsO_{13})_n$ ribbon, parallel to the *c* axis, composed of AsO_4 tetrahedra and MoO_6 octahedra sharing edges and corners. The Na and Ag ions partially occupy several independent close positions, with various occupancies, in the inter-ribbon space delimited by the one-dimensional framework. The composition was refined to $Ag_{1.06(1)}Na_{1.94(1)}$ - $Mo_3O_9AsO_4$.

Related literature

For framework structures containing MO_6 and XO_4 (M = transition metal, X = P, As) building blocks, see: Benhamada *et al.* (1992); Harrison *et al.* (1994); Guyomard *et al.* (1999); Ben Smail *et al.* (1999); Ben Amor & Zid (2006). For a similar onedimensional structure, see: Hamza *et al.* (2010). For details of the synthesis, see: Hajji *et al.* (2004, 2005); Ben Hlila *et al.* (2009); Zid & Jouini (1996); Zid *et al.* (1998). For the bond-valence model, see: Brown & Altermatt (1985). For physical properties of related compounds, see: Daidouh *et al.* (1997); Ouerfelli *et al.* (2004, 2007); Piffard *et al.* (1985); Oyetola *et al.* (1988); Goubitz *et al.* (2001); Ledain *et al.* (1997); Harrison *et al.* (1998); Hajji & Zid (2006); Ruiz *et al.* (2002).

Experimental

Crystal data

AgNa₂Mo₃O₉AsO₄ $M_r = 729.68$ Triclinic, $P\overline{1}$ a = 8.1767 (8) Å b = 9.7687 (9) Å c = 8.0451 (8) Å $\alpha = 99.49$ (2)° $\beta = 106.07$ (2)° $\gamma = 113.29 (2)^{\circ}$ $V = 539.14 (19) \text{ Å}^3$ Z = 2Mo K α radiation $\mu = 8.50 \text{ mm}^{-1}$ T = 298 K $0.36 \times 0.24 \times 0.16 \text{ mm}$

Data collection

```
Enraf–Nonius CAD-4
diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.098, T_{\max} = 0.247
2853 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ $wR(F^2) = 0.063$ S = 1.092355 reflections 2355 independent reflections 2047 reflections with $I > 2\sigma(I)$ $R_{int} = 0.023$ 2 standard reflections every 120 min intensity decay: 1.1%

188 parameters 3 restraints $\Delta \rho_{\text{max}} = 0.95 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.76 \text{ e } \text{\AA}^{-3}$

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2178).

References

- Ben Amor, R. & Zid, M. F. (2006). Acta Cryst. E62, i238-i240.
- Benhamada, L., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1992). J. Solid State Chem. 101, 154–160.
- Ben Hlila, S., Zid, M. F. & Driss, A. (2009). Acta Cryst. E65, i11.
- Ben Smail, R., Driss, A. & Jouini, T. (1999). Acta Cryst. C55, 284-286.
- Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Daidouh, A., Veiga, M. L. & Pico, C. (1997). J. Solid State Chem. 130, 28–34. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Goubitz, K., Čapková, P., Melánová, K., Molleman, W. & Schenk, H. (2001). Acta Cryst. B57, 178–183.
- Guyomard, D., Pagnaux, C., Zah-Letho, J. J., Verbaere, A. & Piffard, Y. (1999). J. Solid State Chem. 90, 367–372.
- Hajji, M. & Zid, M. F. (2006). J. Soc. Chim. Tunis. 8, 229-236.
- Hajji, M., Zid, M. F., Driss, A. & Jouini, T. (2004). Acta Cryst. C60, i76-i78.
- Hajji, M., Zid, M. F. & Jouini, T. (2005). Acta Cryst. C61, i57-i58.
- Hamza, H., Zid, M. F. & Driss, A. (2010). Acta Cryst. E66, i69.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Harrison, W. T. A., Liano, C. S., Nenouff, T. M. & Stucky, G. D. J. (1994). J. Solid State Chem. 113, 367–372.
- Harrison, W. T. A., Phillis, M. L. F., Clegg, W. & Teat, S. J. (1998). J. Solid State Chem. 139, 299–303.
- Ledain, S., Leclaire, A., Borel, M. M. & Raveau, B. (1997). J. Solid State Chem. 129, 298–302.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007). J. Solid State Chem. 180, 1224–1229.
- Ouerfelli, N., Zid, M. F., Jouini, T. & Touati, A. M. (2004). J. Soc. Chim. Tunis. 6, 85–97.
- Oyetola, S., Verbaere, A., Piffard, Y. & Tournoux, M. (1988). Eur. J. Solid State Inorg. Chem. 25, 259–278.
- Piffard, Y., Lachgar, A. & Tournoux, M. (1985). J. Solid State Chem. 58, 253– 256.
- Ruiz, A. I., Lopez, M. L., Pico, C. & Veiga, M. L. (2002). J. Solid State Chem. 163, 472–478.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zid, M. F., Driss, A. & Jouini, T. (1998). J. Solid State Chem. 141, 500-507.
- Zid, M. F. & Jouini, T. (1996). Acta Cryst. C52, 1334-1336.

supplementary materials

Acta Cryst. (2011). E67, i63 [doi:10.1107/S1600536811041961]

AgNa₂Mo₃O₉AsO₄

H. Hamza, M. F. Zid and A. Driss

Comment

La recherche de nouveaux matériaux à charpentes mixtes formées d'octaèdres MO_6 (M = métal de transition) et de tétraèdres XO_4 (X = P, As) suscite un grand intérêt ces dernières années (Guyomard *et al.*, 1999; Benhamada *et al.*, 1992; Harrison *et al.*, 1994; Ben Smail *et al.* 1999; Ben Amor & Zid, 2006). En effet, la jonction entre ces polyèdres conduit à des composés à charpentes ouvertes présentant de nombreuses propriétés physico-chimiques intéressantes qui sont en relation directe avec leurs structures cristallines notamment: conduction ionique (Piffard *et al.*, 1985), échange d'ions (Oyetola *et al.*, 1988) et parfois comme produits d'intercalation en catalyse hétérogène (Goubitz *et al.*, 2001; Ledain *et al.*, 1997). C'est dans ce cadre que nous avons exploré les systèmes A—Mo—As—O (A= cation monovalent) dans lesquels nous avons précédemment caractérisé les phases suivantes: K₂MoAs₂O₉ (Zid & Jouini, 1996), Rb₂MoAs₂O₉ (Zid *et al.*, 1998), β-LiMoAsO₆ (Hajji *et al.*, 2004), LiMo₂AsO₉ (Hajji *et al.*, 2005) et β-NaMoAsO₆ (Ben Hlila *et al.*, 2009). A fin d'augmenter la mobilité des cations en passant à une occupation partielle des sites dans la structure nous avons choisi d'introduire avec le cation alcalin un métal monovalent de transition Ag⁺. Dans ce travail nous nous sommes intéressés en premier à la synthèse et l'étude structurale sur monocristal du matériau puis à l'étude de l'influence de l'introduction d'un métal de transition monovalent sur ces propriétés physiques notamment de conduction ionique. Le composé Na₂AgMo₃O₉AsO₄ obtenu est de formulation et de symétrie similaires à celles de NaAg₂Mo₃O₉AsO₄ (Hamza *et al.*, 2010).

L'unité asymétrique du composé Na₂AgMo₃O₉AsO₄ peut être decrite au moyen de l'unité classique MoAsO₈ reliée par mize en commun de sommets à un un groupement Mo₂O₁₀ formé à partir d'une paire d'octaèdres MoO₆ partageant une arête (Fig. 1).

La structure du composé Na₂AgMo₃O₉AsO₄ est construite à partir de rubans infinies (Mo₃AsO₁₃)_n disposés selon la direction [001] (Fig. 2). Notons qu'au sein de la charpente anionique (Mo₃O₉AsO₄)²⁻, les octaèdres MoO₆ se lient par partage d'arêtes formant des groupements (Mo₃O₁₄) qui par mize en commun de sommets developpent des unités cycliques à six octaèdres. De plus, les atomes d'oxygène formant l'arête commune de certaines paires d'octaèdres appartiennent aussi soit aux tétraèdres AsO₄ soit aux octaèdres Mo2O₆ (Fig. 3). Il en résulte ainsi une charpente uni-dimensionnelle, similaire à celle rencontée dans le composé Ag₂NaMo₃O₉AsO₄ (Hamza *et al.*, 2010), possédant des espaces inter-rubans où résident les cations monovalents (Fig. 4). L'examen des facteurs géométriques dans la structure montre qu'ils sont conformes à ceux rencontrés dans la littérature (Hajji & Zid, 2006; Ben Hlila *et al.*, 2009). De plus, l'utilization de la méthode BVS, pour le calcul des différentes valences des liaisons, utilisant la formule empirique de Brown (Brown & Altermatt, 1985) vérifie bien les valeurs de charges des ions attendues dans la phase étudiée: Mo1 (5,942), Mo2 (5,974), Mo3 (5,909) et As1 (4,844). La répartition des cations sur plusieurs positions et leur occupation partielle des sites, pourraient conduire à une forte mobilité, par conséquent à un nouveau conducteur ionique (Daidouh *et al.*, 1997; Ruiz *et al.*, 2002; Ouerfelli *et al.*, 2007). En effet, des mesures électriques moyennant un pont d'impédance complexe de type HP4192A ont été réalisées sur une phase pure de Na₂AgMo₃O₉AsO₄ compactée sous forme de pastille. L'ensemble pastille-électrodes constitue une cellule électrochimique équivalente à deux circuits électriques de type RC montés en série et caractérisés par leur impédance. Par ailleurs la variation

de la conductivité ionique en fonction de la température suit la loi d'Arrhenius (Fig. 5): $Ln(\sigma T) = f(10^4/T)$. Le calcul de la pente de la droite permet d'accéder à la valeur de l'énergie d'activation Ea = 1,06 eV, celle de la conductivité ionique à 430°C s'avère de l'ordre de 1,387 10⁻⁶ S.cm⁻¹. La comparaison de ces valeurs à celles trouvées expérimentalement pour le composé Ag₂NaMo₃O₉AsO₄ (Fig 6): Ea = 0,699 eV e t de la conductivité ionique à 430°C égale à 5,387 10⁻⁶ S.cm⁻¹, montre une amélioration de la valeur de la conductivié et un gain dans la largeur de la bande interdite Ea, au cours du remplacement, dans la structure, de l'ion sodium par Ag⁺, de taille similaire mais ion plus polarisable. Ces résultats permettent de classer, en se basant sur la littérature, les deux matériaux synthétisés Na₂AgMo₃O₉AsO₄ et Ag₂NaMo₃O₉AsO₄ (Hamza *et al.*, 2010) dans la famille des conducteurs ioniques moyens (Daidouh *et al.*, 1997; Harrison *et al.* 1998; Hajji & Zid, 2006; Ouerfelli *et al.*, 2004).

Experimental

Les cristaux relatifs à AgNa₂Mo₃O₉AsO₄ ont été obtenus à partir d'un mélange formé des réactifs: (NH₄)₂Mo₄O₁₃ (Fluka, 69858), NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01–775), Na₂CO₃ (Fluka, 71350) et AgNO₃ (Prolabo, 21572) pris dans les rapports molaires Na:Ag:Mo:As égaux à 2:1:1:2 dans le but de synthétiser la série des composés à structure lamelaire A₂MoO₂As₂O₇ (A=Na et Ag; A=K (Zid *et al.*, 1996); A=Rb (Zid *et al.*, 1998)). Le mélange, finement broyé, est préchauffé à l'air à 673 K en vue d'éliminer NH₃, H₂O, CO₂ et NO₂. Il est ensuite porté jusqu'à une température de synthèse proche de la fusion, 808 K. Le mélange est alors abandonné à cette température pendant deux semaines pour favoriser la germination et la crissance des cristaux. Le résidu final a subi en premier un refroidissement lent (5°/jour) jusqu'à 758 K puis un second rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur jaunatre, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau chaude. Une analyse qualitative au M.E.B.E. de type FEI Quanta 200 confirme la présence des différents éléments chimiques attendus: As, Mo, Ag, Na et l'oxygène.

Refinement

L'analyse des Fouriers différences révèle l'existence de certains pics résiduels très proche des positions des ions Ag^+ . Dans l'affinement final et pour des raisons de neutralité électrique les taux d'occupation des cations Na^+ et Ag^+ ont été menés en utilisant la condition SUMP autorisée par le programme *SHELX* (Sheldrick, 2008). De plus les ellipsoïdes et les positions des ions Na^+ ont été définis, moyennant respectivement les conditions EADP et EXYZ autorisée aussi par le programme *SHELX*, identiques à ceux des ions Ag^+ . En effet, les ellipsoïdes sont mieux définis. Les densités d'électrons max et min restants dans la Fourier-différence sont situées respectivements à 0,79 Å de As1 et à 1,81 Å de O10. Il en résulte la composition chimique finale, $Ag_{1,06}$ (1)Na_{1,94} (1)Mo₃AsO₁₃ du nouveau matériau obtenu.

Figures

Fig. 1. : Unité asymétrique dans Na₂AgMo₃O₉AsO₄. Les élipsoides sont définis avec 50% de probabilité. Code de Symétrie: (i)1 - x, 1 - y, 1 - z; (ii)x, -1 + y, z; (iii)x, -1 + y, -1 + z; (iv)x, y, -1 + z; (v)1 - x, 1 - y, -z; (vi)1 - x, -y, 1 - z.

Fig. 2. : Projection d'un ruban de Na₂AgMo₃O₉AsO₄, mettant en évidence les jonctions des polyèdres.

Fig. 3. : Vue en perspective d'un ruban mettant en évidence les deux types de ponts triples dans la structure.

Fig. 4. : Projection de la structure de Na₂AgMo₃O₉AsO₄, selon b, mettant en évidence les espaces inter-rubans où résident les cations.

Fig. 5. : Conductivité ionique en fonction de la température pour Na₂AgMo₃O₉AsO₄.

Fig. 6. : Conductivité ionique en fonction de la température pour Ag₂NaMo₃O₉AsO₄.

silver disodium trimolybdenum(VI) nonaoxide arsenate

Crystal data	
AgNa ₂ Mo ₃ O ₉ AsO ₄	Z = 2
$M_r = 729.68$	F(000) = 668
Triclinic, PT	$D_{\rm x} = 4.495 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.1767 (8) Å	Cell parameters from 25 reflections
b = 9.7687 (9) Å	$\theta = 10 - 15^{\circ}$
c = 8.0451 (8) Å	$\mu = 8.50 \text{ mm}^{-1}$
$\alpha = 99.49 \ (2)^{\circ}$	T = 298 K
$\beta = 106.07 \ (2)^{\circ}$	Prism, yellow
$\gamma = 113.29 \ (2)^{\circ}$	$0.36 \times 0.24 \times 0.16 \text{ mm}$
$V = 539.14 (19) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	2047 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.023$
graphite	$\theta_{\text{max}} = 27.0^\circ, \ \theta_{\text{min}} = 2.4^\circ$
$\omega/2\theta$ scans	$h = -10 \rightarrow 1$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = -11 \rightarrow 12$
$T_{\min} = 0.098, T_{\max} = 0.247$	$l = -10 \rightarrow 10$
2853 measured reflections	2 standard reflections every 120 min
2355 independent reflections	intensity decay: 1.1%

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0204P)^2 + 1.4359P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.063$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.95 \text{ e} \text{ Å}^{-3}$
2355 reflections	$\Delta \rho_{min} = -0.76 \text{ e} \text{ Å}^{-3}$

188 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008),
	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
3 restraints	Extinction coefficient: 0.00141 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Mo1	0.71234 (5)	0.14251 (5)	0.48605 (5)	0.00818 (11)	
Mo2	0.58834 (6)	0.75426 (5)	0.30104 (5)	0.00827 (11)	
Mo3	0.43503 (6)	0.22968 (5)	0.11436 (5)	0.00868 (11)	
As1	0.22233 (7)	0.82953 (5)	0.04824 (6)	0.00761 (12)	
Ag1	0.14302 (10)	0.43681 (8)	-0.09577 (9)	0.0213 (3)	0.524 (3)
Na1	0.14302 (10)	0.43681 (8)	-0.09577 (9)	0.0213 (3)	0.476 (4)
Ag2	0.84335 (15)	0.57626 (11)	0.60990 (13)	0.0320 (4)	0.391 (3)
Na2	0.84335 (15)	0.57626 (11)	0.60990 (13)	0.0320 (4)	0.609 (4)
Ag3	0.97290 (18)	-0.02400 (16)	0.74218 (18)	0.0194 (5)	0.147 (3)
Na3	0.97290 (18)	-0.02400 (16)	0.74218 (18)	0.0194 (5)	0.853 (4)
01	0.2244 (5)	-0.0212 (4)	0.9676 (5)	0.0135 (7)	
O2	0.8795 (5)	0.3378 (4)	0.5567 (5)	0.0173 (8)	
O3	0.0460 (5)	0.6539 (4)	0.9111 (5)	0.0168 (8)	
O4	0.6979 (5)	0.7508 (4)	0.1170 (4)	0.0120 (7)	
O5	0.3912 (5)	0.5759 (4)	0.2330 (5)	0.0202 (8)	
O6	0.4357 (5)	0.8235 (4)	0.0849 (4)	0.0114 (7)	
07	0.5640 (5)	0.1338 (4)	0.2611 (5)	0.0139 (7)	
08	0.5097 (5)	0.8757 (4)	0.4424 (5)	0.0130 (7)	
09	0.6297 (5)	0.4137 (4)	0.2142 (5)	0.0177 (8)	
O10	0.2813 (5)	0.2401 (5)	0.2173 (5)	0.0196 (8)	
011	0.8223 (5)	0.0337 (4)	0.4165 (5)	0.0152 (7)	
012	0.8183 (5)	0.1370 (4)	0.7539 (4)	0.0133 (7)	
013	0.7650 (5)	0.7405 (4)	0.4636 (5)	0.0146 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic alsplacement parameters (A	splacement parameters (\AA^2)
-----------------------------------	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.0074 (2)	0.0088 (2)	0.0082 (2)	0.00380 (16)	0.00317 (15)	0.00218 (15)
Mo2	0.0096 (2)	0.0090 (2)	0.00853 (19)	0.00560 (16)	0.00429 (15)	0.00358 (15)

supplementary materials

Mo3	0.0106 (2)	0.0086 (2)	0.0085 (2)	0.00513 (16)	0.00467 (16)	0.00320 (15)
As1	0.0071 (2)	0.0071 (2)	0.0090 (2)	0.00346 (18)	0.00316 (18)	0.00267 (18)
Ag1	0.0186 (4)	0.0182 (4)	0.0256 (4)	0.0050 (3)	0.0110 (3)	0.0074 (3)
Na1	0.0186 (4)	0.0182 (4)	0.0256 (4)	0.0050 (3)	0.0110 (3)	0.0074 (3)
Ag2	0.0444 (7)	0.0255 (5)	0.0269 (5)	0.0217 (5)	0.0045 (4)	0.0116 (4)
Na2	0.0444 (7)	0.0255 (5)	0.0269 (5)	0.0217 (5)	0.0045 (4)	0.0116 (4)
Ag3	0.0142 (7)	0.0231 (8)	0.0215 (8)	0.0102 (6)	0.0056 (5)	0.0060 (6)
Na3	0.0142 (7)	0.0231 (8)	0.0215 (8)	0.0102 (6)	0.0056 (5)	0.0060 (6)
O1	0.0152 (17)	0.0105 (17)	0.0143 (17)	0.0060 (14)	0.0036 (14)	0.0065 (14)
O2	0.0177 (18)	0.0111 (17)	0.0166 (18)	0.0035 (15)	0.0031 (15)	0.0026 (14)
O3	0.0119 (17)	0.0117 (17)	0.0181 (18)	0.0012 (14)	0.0014 (15)	0.0015 (14)
O4	0.0155 (17)	0.0157 (17)	0.0116 (16)	0.0120 (15)	0.0062 (14)	0.0066 (14)
O5	0.0182 (19)	0.0136 (19)	0.027 (2)	0.0057 (16)	0.0079 (16)	0.0069 (16)
O6	0.0118 (16)	0.0171 (17)	0.0100 (16)	0.0093 (14)	0.0054 (14)	0.0066 (14)
O7	0.0164 (18)	0.0140 (17)	0.0117 (16)	0.0088 (15)	0.0035 (14)	0.0032 (14)
O8	0.0119 (17)	0.0153 (17)	0.0123 (16)	0.0067 (14)	0.0054 (14)	0.0037 (14)
O9	0.0188 (18)	0.0132 (18)	0.0201 (19)	0.0065 (15)	0.0087 (16)	0.0028 (15)
O10	0.024 (2)	0.025 (2)	0.0181 (19)	0.0152 (17)	0.0126 (16)	0.0087 (16)
O11	0.0165 (18)	0.0140 (18)	0.0186 (18)	0.0079 (15)	0.0102 (15)	0.0053 (15)
O12	0.0140 (17)	0.0224 (19)	0.0102 (16)	0.0129 (15)	0.0060 (14)	0.0071 (14)
O13	0.0159 (18)	0.0184 (19)	0.0119 (17)	0.0113 (16)	0.0035 (14)	0.0054 (14)

Geometric parameters (Å, °)

Mo1—O2	1.727 (4)	Mo3—O6 ^{iv}	2.249 (3)
Mo1-011	1.758 (3)	As1—O3 ^v	1.667 (4)
Mo1—O7	1.845 (3)	As1—O1 ^{vi}	1.687 (3)
Mo1—O8 ⁱ	2.004 (3)	As1—O6	1.713 (3)
Mo1-012	2.107 (3)	As1—O12 ⁱ	1.720 (3)
Mo1—O8 ⁱⁱ	2.371 (4)	Ag1—O9 ^{iv}	2.405 (4)
Mo2—O5	1.706 (4)	Ag1—O3 ^{vii}	2.450 (4)
Mo2—O13	1.727 (3)	Ag1—O3 ^v	2.539 (4)
Mo2—O8	1.917 (3)	Ag1—O5	2.574 (4)
Mo2—O4	1.933 (3)	Ag2—O3 ^{viii}	2.318 (4)
Mo2—O6	2.212 (3)	Ag2—O13	2.321 (3)
Mo2—O11 ⁱⁱⁱ	2.455 (4)	Ag2—O2	2.446 (4)
Mo3—O10	1.710 (4)	Ag3—O1 ^{viii}	2.322 (4)
Mo3—O9	1.722 (4)	Ag3—O12	2.381 (4)
Mo3—O7	1.959 (3)	Ag3—O11 ^{ix}	2.390 (4)
Mo3—O4 ^{iv}	1.961 (3)	Ag3—O10 ^x	2.453 (4)
Mo3—O1 ^v	2.225 (4)	Ag3—O13 ⁱⁱ	2.511 (4)
O2—Mo1—O11	106.77 (17)	O13—Mo2—O11 ⁱⁱⁱ	82.93 (15)
O2—Mo1—O7	97.84 (16)	O8—Mo2—O11 ⁱⁱⁱ	68.41 (13)
011—Mo1—O7	99.39 (16)	O4—Mo2—O11 ⁱⁱⁱ	83.59 (13)
O2—Mo1—O8 ⁱ	108.96 (16)	O6—Mo2—O11 ⁱⁱⁱ	83.66 (13)

O11—Mo1—O8 ⁱ	142.78 (15)	O10—Mo3—O9	103.12 (18)
O7—Mo1—O8 ⁱ	85.84 (15)	O10—Mo3—O7	101.59 (16)
O2—Mo1—O12	89.08 (16)	O9—Mo3—O7	93.33 (16)
O11—Mo1—O12	90.26 (15)	O10—Mo3—O4 ^{iv}	97.04 (16)
O7—Mo1—O12	165.90 (14)	O9—Mo3—O4 ^{iv}	100.96 (16)
O8 ⁱ —Mo1—O12	80.29 (13)	O7—Mo3—O4 ^{iv}	153.26 (14)
O2—Mo1—O8 ⁱⁱ	169.84 (14)	O10—Mo3—O1 ^v	88.09 (16)
O11—Mo1—O8 ⁱⁱ	72.75 (14)	O9—Mo3—O1 ^v	168.35 (15)
O7—Mo1—O8 ⁱⁱ	92.22 (14)	O7—Mo3—O1 ^v	81.16 (13)
O8 ⁱ —Mo1—O8 ⁱⁱ	70.24 (15)	O4 ^{iv} —Mo3—O1 ^v	80.47 (14)
O12—Mo1—O8 ⁱⁱ	80.79 (13)	O10—Mo3—O6 ^{iv}	164.85 (16)
O5—Mo2—O13	104.45 (18)	O9—Mo3—O6 ^{iv}	89.22 (15)
O5—Mo2—O8	98.74 (17)	O7—Mo3—O6 ^{iv}	86.19 (13)
O13—Mo2—O8	103.37 (15)	O4 ^{iv} —Mo3—O6 ^{iv}	71.67 (12)
O5—Mo2—O4	106.41 (17)	O1 ^v —Mo3—O6 ^{iv}	80.22 (13)
O13—Mo2—O4	95.64 (15)	O3 ^v —As1—O1 ^{vi}	113.92 (17)
O8—Mo2—O4	143.46 (14)	O3 ^v —As1—O6	107.68 (17)
O5—Mo2—O6	90.71 (16)	O1 ^{vi} —As1—O6	110.61 (17)
O13—Mo2—O6	163.30 (15)	O3 ^v —As1—O12 ⁱ	106.89 (18)
O8—Mo2—O6	80.74 (13)	O1 ^{vi} —As1—O12 ⁱ	105.76 (17)
O4—Mo2—O6	72.99 (12)	06—As1—012 ⁱ	111.99 (15)
O5—Mo2—O11 ⁱⁱⁱ	166.61 (15)		

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) x, y+1, z; (iv) -x+1, -y+1, -z; (v) x, y, z-1; (vi) x, y+1, z-1; (vii) -x, -y+1, -z+1; (viii) x+1, y, z; (ix) -x+2, -y, -z+1; (x) -x+1, -y, -z+1.

Fig. 4

Fig. 6